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ABSTRACT 

This report describes a new method of classifying data vectors by involving a two- 
step process. First, a data-specific step produces a "distance" qualitatively describing the 
similarity of the vector under analysis to each vector in a database representing a particu- 
lar class. Second, the evidence represented by the vector of statistically correlated "dis- 
tances" is combined into an overall numerical confidence that the vector under test 
belongs to the same class as the database vectors. In addition, the supporting evidence is 
available in the form of the individual distances. 

This "all-neighbor" method has several advantages over competing formalisms such 
as neural networks or the ^-nearest-neighbor classification method. It can deal with data 
vectors of varying dimension, as long as the distance measure is capable of comparing 
them in some fashion. Even more importantly, it can deal with distance vectors of varying 
dimension, a common situation when dealing with a heterogeneous reference database. It 
produces a numeric confidence rather than just a simple classification. Further, it uses all 
the information contained in the distance vector, and it facilitates adjustment of false 
alarm rates. The method is applied to several different data types to demonstrate its gener- 

ality. 
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1.   INTRODUCTION 

There exists a substantial group of pattern recognition problems in which complicated signals are 
measured, representing multiple classes. For example, consider the problem of categorizing the state of an 
internal combustion engine by examining an audio recording of its operation. If the analyst has access to 
the detailed design of the engine, it is possible that the various sounds may be decomposed into frequencies 
representing motions or vibrations of specific engine parts, which could then be studied at some level. But 
what if such knowledge is lacking, and instead a database of engine recordings is available, representing 

possibly a range of engine states from the set (new, worn, damaged)? 

Or consider monitoring an earth-orbiting spacecraft using a narrowband radar. Such a radar records 
an instantaneous total radar cross-section (RCS) value that fluctuates with time as the spacecraft moves with 
respect to the radar. Again, if the structure of the spacecraft (as deployed) is exactly known, and the orbit 
and motion of the spacecraft are precisely known, in principle one can predict the signature using electro- 
magnetic prediction methods. If the radar wavelength is large enough compared to the size of the spacecraft, 
one may even expect a tolerable amount of processing on a large computer. However, in reality one or more 
of these criteria is usually not satisfied, so the only recourse may be to base one's assessment on a collected 
database of historic signatures of the same spacecraft or class of spacecraft. 

This type of problem has often historically been attacked using nonparametric methods, such as a 
nearest-neighbor (NN) classifier [1] or neural network, [2] which selects a single class as the most likely. 
The NN method has been demonstrated as an effective pattern recognition technique in many experiments. 
An oft-cited reference [3] proved that the probability of error of this method is bounded by twice the Bayes 
error. However, this is only true asymptotically, in the infinite sample case, so this result is rarely applicable 
in practice. In practice, an undersampled situation usually exists in which it may be helpful to consider more 
than the nearest neighbor of a vector. And of course one may be able to do better than twice the Bayes error. 
The it-nearest-neighbor method [1,4] and its variants [5,6] are sometimes used to give the classifier more 
information, although both theoretical and experimental work [3,7,8] suggest that this is approach is some- 

times less effective than the simple NN. 

The neural network is architecturally different from the NN approach, but the performance has proved 
to be similar in many experiments. It has been shown [9-11] that in the limit, the performance of neural 
networks approaches the Bayesian limit, which sounds twice as good as the NN situation. However, both 
these results are for an idealized case of infinite data, and most reported experiments comparing the two 
methods [8,12-14] show the NN methods to perform slightly better in most cases. The training phase of 
network construction evidently creates boundaries in hyperspace that are similar to those defined by the NN 
method. The output is usually comparable to the output of the NN algorithms as well, consisting of a simple 

classification. 

There are difficulties encountered in applying these methods to certain real problems. The confidence 
in a classification is usually unavailable, except as a statistical performance over an entire ensemble of data. 
It is always desirable to be able to explain to the user the rationale behind the system's assessment, as is done 
in some rule-based systems. Explanatory evidence tends to be absent or lacking with these methods, 
although an NN system can exhibit the nearest neighbor itself as evidence to support the classification. In 



either case the user can be provided with an assessment of the overall performance of the classifier based 
on certain experiments or training runs. It would be better to report the confidence in each classification, 
however, since certain input patterns can in principle be determined not to match anything in the database 
well enough for high confidence in the class assignment, while others may generate extremely good 
matches. 

Another common complication in this type of problem involves varying dimensions of the data vec- 
tors. For example, what if most of the engine recordings last 10 s, but a small group of potentially valuable 
examples last only 3 s? What if radar satellite signatures inhabit a total look angle range from 20° 160°, with 
some short, some long, and some not even overlapping in look angle? The NN and neural network methods 
normally require input vectors of constant dimension, so some method must be found to meet this require- 
ment. 

One additional problem is that there is no guarantee that all the possible classes of the system under 
analysis are represented by vectors in the database. In fact, many malfunctions probably are not represented. 
In some cases it may be impossible or dangerous to collect data on malfunctioning systems. Work has been 
reported [15] on general methods of deciding that a vector does not belong to any class represented in the 
database or that it is ambiguous. While these methods may indeed be useful, they are mainly applicable to 
the standard case of vectors in n-space. 

An interesting paper by Denoeux [16] describes a method of combining the Dempster-Shafer formal- 
ism with the fc-NN algorithm. This technique also automatically generates an assessment of the uncertainty 
in the classification, as expected for Dempster-Shafer methods. This is definitely in the spirit of the current 
method, but k is fixed, so not all the available information is used. Although large k may be used with this 
method, in the case of a heterogeneous database in which different input vectors have different numbers of 
comparable database vectors, it is difficult to select k a priori without sometimes having fewer than k avail- 
able distances. 

In light of the preceding discussion, one can itemize some desirable properties of a system for assess- 
ing the state of an object, given a sample vector and a database of historic vectors. None of the methods in 
the literature seems to have all the following properties, which assume a system based on some kind of di- 
rect (NN) or indirect (neural net) comparison of vectors. 

1. The comparison algorithm should be able to handle input vectors of different dimension. 
(Some minimum size may be necessary.) This rules out using a simple feature vector in n- 
dimensional space, since some of the dimensions may be missing. In fact, while A may be 
comparable with B, and B with C, it is possible that there is no way to compare A with C. 
One way to deal with this problem is to work with distances between vector pairs, where 
possible, rather than with the original vectors. 

2. If a large subset of the database is comparable with the new vector, then all the evidence 
generated from each possible comparison should be used by the system. The NN approach 
would not satisfy this requirement, but even &-NN methods fail to utilize all the potential 
evidence. It follows that the system must be able to assess a new vector based on compar- 
isons with a database subset of varying size. It is expected that the confidence in a given 



class assignment would be lower on the average when fewer database vectors are available 

for comparison. 

3. To support individual assessments and explanatory evidence, the methods should be either 
statistical or "fuzzy," generating a continuum of confidences rather than just dividing a 
pattern space into disjoint regions. 

4. The system should not assume that all the possible classes are represented in the database. 
A "none-of-the-above" hypothesis should exist, or individual hypotheses of particular 
class membership (or not) should be tested. This requirement is compatible with the 
desired numerical confidence assessment of point (3). 

It is easy to write down this wish list, but it is difficult to develop methods'that satisfy each point. A 
statistical approach is obviously one way to proceed, but the individual distances between pattern vectors 
are correlated, and the dimension of the necessary joint probability density functions (PDFs) might be as 
large as dozens or hundreds. Given a database of some hundreds or thousands of vectors, it appears insur- 
mountable to take a Bayesian approach. Even if a few thousand vectors were comparable and available, and 
hence perhaps ten million distances could be computed and analyzed, it appears intractable to estimate a 
joint density that might accurately represent the likelihood of a distance vector of several hundred or a thou- 

sand values. 

In the method about to be described, this problem is approached by first computing a numeric distance 
between vectors, wherever possible, which is designed to capture their similarity. This is the problem-spe- 
cific part of the method, and will not be dwelled upon in this report. Nonparametric methods are then used 
to estimate single-distance PDFs. This procedure is necessary since nonlinear preprocessing is typically 
used prior to computation of any distances, and sometimes combinatorial methods are used in the distance 
measure itself, making it difficult to predict the form of the PDFs. The nonparametric estimates show quite 
a bit of complexity, which further discourages analytic efforts. 

Rather than classifying the unknown vector into one of the database classes, the hypothesis that the 
vector belongs to each possible class is tested. To obtain distances representing the null hypothesis, two 
methods have been used. The first is to simulate them, as described in Section 2. If simulation is possible, 
large numbers of simulated distances may be generated to largely solve the problem. If simulation is not 
possible, a large group of interclass distances may be used to represent the null hypothesis. Given these two 
groups of distances, a likelihood function giving the probability of class membership may be estimated. Of- 
ten there is some a priori information about the class of the unknown vector. For example, in the satellite 
monitoring situation it is fairly certain which satellite is being tracked, so a single assessment of the confi- 
dence that the satellite is nominal is produced. If the situation is less certain, multiple confidences of mem- 
bership in various classes may be produced. 

But the single-distance problem is really not the heart of the matter. The difficulty is in dealing with 
multiple correlated distances. In the course of this research a new technique was developed, combining the 
evidence for n distances, given fixed n. Further analysis of this statistic for varying n produced a useful an- 
alytic expression for evidence combination, which is a function of n. Methods of optimizing the parameters 
of this expression based on large-scale classification experiments have been used with good success. The 
result is not only an overall confidence of class assignment, but also an easy recapitulation of the individual 



evidence going into the overall assessment, which is very useful to convince a skeptical user that the confi- 
dences are correct. 

This method is believed to have general applicability. Initially it was applied to narrowband radar sig- 
natures of low-earth-orbit (LEO) satellites with both low and high intervector correlations. More recently it 
has been applied to wideband radar range profiles of geosynchronous satellites, which represent completely 
different physics, as well as different satellite configurations, operations, and orbits. The technique has 
worked well in both cases. Work is under way to apply the method to photometric data. 



2.   SINGLE-DISTANCE STATISTICS 

2.1    NARROWBAND RADAR SIGNATURE DESCRIPTION 

The method will be presented by working through an entire example, using the narrowband radar sig- 
nature problem that inspired its development. Previously published descriptions [17] of methods for com- 
paring narrowband radar signatures contain details of the low-level feature extraction steps, so they are not 
pursued here. A brief description of the data and processing will help motivate the statistical discussion. 

The objects of interest are LEO satellites with reasonably circular orbits with apogee/perigee that do 
not vary too much over their lifetime, for example, remaining within 700 to 750 km. In this case, the orbital 
geometry as seen by the radar can be characterized by the crossover (maximum) elevation angle of the pass. 
The signature can be plotted as a function of look angle, the angle between the satellite velocity vector and 
the radar (viewed from the satellite), as shown in Figure 1. Using look angle gives repeatability of signatures 

for stable satellites that maintain one or several configurations. 
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Figure!. Angle definitions. 

The resulting signatures look something like Figure 2, which illustrates several features of the data. 
The signatures shown are from stable satellites of unknown configuration, but similar pass geometry, which 
renders them comparable. The abscissa is look angle, while the ordinate is dBsm, i.e., decibels above and 
below one square meter radar cross section. First, the lengths of the signatures differ. Second, sometimes 
glitches and dropouts occur in portions of the signature. Third, sometimes substantial similarity occurs in 
part of the signature, while the rest of it does not match well at all. 
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Figure 2. Representative signatures. 

Preprocessing to clean up the data is quite important. Conventional linear and nonlinear filtering is 
performed on the signatures initially. Since the peaks in radar data are known to sometimes fluctuate greatly, 
they are processed logarithmically (as displayed in Figure 2). Since the nulls are known to be nonrepeatable, 
nonlinear processing reduces their relative magnitude by processing them linearly, essentially flattening out 
the signature around zero. 

The basic approach to distance calculation from this type of data is to compare two signatures along 
their range of common look angle, whatever that may be. Within that range, the signatures are chopped up 
into overlapping segments of about 10°, which are cross-correlated to obtain measures of segment similar- 
ity. The correlations and especially the shifts that the correlation process identifies as best aligning the seg- 
ments are used to compute an overall distance. 

The available common look angle ranges from about 30° to 120°. Furthermore, some signatures rep- 
resenting stable satellites, with a similarity that is desirable to capture, show similarity only over part of the 
signature. For these reasons, the entire region of common look angle is not used to compute a distance, but 
rather medium-sized chunks of about 35° are used, resulting in multiple "partial" distances to describe the 
match of each pair of signatures. These chunks are overlapped about 50% to avoid edge effects. 



To summarize, after preprocessing two signatures, their common look angle is divided into overlap- 
ping segments of approximately 35°. Each of these segments is then divided into small overlapping seg- 
ments of about 10°, and a partial distance is computed based on cross-correlations of the small segments. A 
subset of the segments may be used (with distance penalty) so that dropouts or totally bad segments do not 

destroy the distance. 

This procedure was performed on the signatures of Figure 2. The resulting log distance vector be- 
tween A and B, d(A,B) was -4.79, -2.12, 2.05, where a distance below about 0 indicates similarity, and the 
-4.79 indicates great similarity. Indeed, the correspondence between the leftmost portions of the signature 
pair is noticeable, but most of the rest of the signatures look dissimilar. Likewise, d(A,C) is -2.06, a single 
distance due to the much smaller common look angle. Finally, d(B,C) is 0.80, again reflecting no similarity 

at all. 

Rather than a single distance describing the difference between two signatures, this algorithm outputs 
distance vectors of varying lengths. The individual distances are of course correlated, since their corre- 
sponding vector segments overlap about 50%, among other reasons, seeming to make problems even worse, 
but the plan is to process many correlated distances anyway downstream. Rather than take any steps to 
merge distances here, these multiple quantities are treated as separate, correlated pieces of evidence about 

the status of the unknown signature. 

2.2    ESTIMATING SINGLE-DISTANCE STATISTICS 

Assume that nothing is known about the satellite class under analysis except that it normally is stable 
with respect to the earth, and it probably has a limited number of physical configurations. Given a new sig- 
nature of this class, the question is whether the satellite is still stable (hypothesis Hx) or perhaps has lost 
stability and is oriented in an unusual way (H0). Rapid tumbling will normally be evident from the periodic 
nature of the signature, but the slow tumble case is much more difficult to detect. The database contains nu- 
merous signatures representing various physical configurations of the satellite. In this problem, the issue is 
not determining the configuration of the satellite, just in testing the hypothesis that the satellite is stable. 

Given a database of several hundred or even several thousand signatures, potentially many thousands 
of signature comparisons are suitable for analysis. The basic assumption is that the distance statistics will 
be such that a stable satellite will have smaller distances than an unstable satellite. The database can be used 
to determine the single-distance statistics for a stable satellite, but there are two problems with the statistics 
for the unstable case. First, there are likely to be many fewer examples of known unstable satellites repre- 
sented in the database. The reasons for this are varied, but it is probably not very useful to collect such data, 
nor do most satellite classes have many objects that spend much time in an unstable mode. Second, false 
alarm rates are being measured here, and in reality many more distances are needed to get a good estimate 
of false alarm rates in the important small-distance region. 

The solution is to simulate the unstable case by comparing stable signatures from the database in 
which the geometries are completely different. This simulation can be done by insisting that the crossover 
elevations of the signatures compared differ by more than 10°, for example, rather than less than 3° (for 
UHF signatures). The look angles can also be shifted by various larger amounts than the distance measure 



can tolerate, simulating a yaw-like instability. Reversing the look angles for one signature simulates flying 
that satellite backwards, doubling the potential simulated unstable distances. 

Given these sample vectors for the hypotheses H0 and //,, Bayesian hypothesis testing theory [18] is 
applicable, using the PDFs p(R\Hx), where R is the measurement, which is in this case a distance. Given a 
priori probabilities and a cost function, a weighted ratio of these PDFs produces a likelihood ratio, defining 
a method for choosing between the two hypotheses. In this two-hypothesis case, assume equal a priori prob- 
abilities, and a trivial cost function weighting any type of error equally. Then the solution reduces to a simple 
ratio of the PDFs. 

The distance measure previously described is a highly nonlinear calculation, and computing a histo- 
gram of the distances illustrates that fact. The top two curves of Figure 3 represent the stable and simulated 

unstable cases, each of which is the logarithm of a log-distance histogram, after normalization to unit area. 
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Figure 3. Single-distance statistics. 



The discontinuities and spikes are related to several facts. First, the segments must reach their best 
alignment by shifting look angle within certain limits, and a certain minimum number of segments is 
needed. If that minimum number does not have the requisite shift, the comparison is considered a failure, 
and an arbitrary value of 50 is assigned to the distance (log distance of 3.91), explaining the large spike at 

3.91. 

Second, if 35° is divided into 50% overlapping segments of 10°, 6 segments are obtained. The small- 
est distances occur when all 6 segments have legal and similar best shifts. When only 5 segments are used, 

a discontinuity occurs, and similarly for 4, etc. 

The difference of these log curves is a likelihood ratio, estimating the likelihood that a single distance 
represents a stable satellite, Now the data samples suffer from unknown correlations, so it is difficult to pre- 
dict exactly how many samples will be needed to obtain a given level of accuracy. The solution is simply to 
use all available stable case distances (a little less than half a million in this instance) and simulate a larger 
number of unstable distances (a little under two million). 

It is clearly necessary to smooth these curves. The discontinuities could cause bias problems if simple 
filtering is used. Methods of dealing with this problem may be taken directly from spectral estimation 
[19,20] and involve "trend-removal" or "prewhitening" in which spikes, steps, and possibly polynomial 
trends are estimated and removed from the data to prevent bias of the other, smaller frequency components. 
Such methods are used in the current scheme, and the result is a likelihood ratio curve such as shown at the 

bottom of Figure 3. 

A couple of features of this likelihood function estimate may be noted. The spikes were obtained by 
removing the corresponding spikes from the histograms and processing them separately. The important 
small distance region is extrapolated out beyond the data (straight line) at a rate hopefully representative of 
the true function. The rest of the function is based on the difference of smoothed versions of the histograms. 

The likelihood function shows that a very small distance generates a rather large likelihood; for ex- 
ample a distance of-5 gives a log likelihood of 2.4, so the odds that this single distance represents the stable 
case are about e2A:\ or 11:1. A very good match between two signatures is not likely to be coincidental. 

On the other hand, a total match failure (distance 3.91) only generates log likelihood of-0.32, giving 
odds stable of 0.73:1. This is because there are many ways that two signatures can fail to match. For exam- 
ple, signatures from a stable satellite might represent different physical configurations of the satellite, or the 
state vector describing the sensor viewing might be inaccurate. Clearly, it is essential to combine many such 
likelihoods to obtain much higher (and lower) confidences. 



3.  MULTIPLE-DISTANCE COMBINATION 

3.1     OVERVIEW 

Assume there exist a number of correlated distances, each of which represents evidence that a given 
vector matches a vector in the database of good vectors. The question is whether to accept //,, object stable, 
or HQ, object unstable. Assume that there is some (unknown) intrinsic dimensionality in the data. In the nar- 
rowband radar signature example, this might approximate the number of physical configurations of a satel- 

lite. 

Conceptually, if the number of distances is much less than the intrinsic dimensionality of the data, the 
correlations between distances should be less; if this number is larger, they should be greater. From this 
viewpoint, consider the following two-step process for determining an overall likelihood given n multiple 

correlated distances. 

First, compute the n individual single-distance log likelihoods and sum them as if they represented 
independent statistics. The resulting evidence combination S„ will overestimate the total log likelihood, but 
will be corrected by multiplying by a factor K„ less than unity and depending on n. The overall log likelihood 

An will be 

\ = KnSn      . 0) 

This severe dimensionality reduction is suboptimal, but it has certain nice properties. All the distances 
are used, their relative contributions are equally weighted, and the particular pieces of evidence contributing 
most to the overall assessment are easy to identify. Varying n can be handled, as long as Kn is computed for 

each n. 

To see that this method is suboptimal in general, consider the fact that several large likelihoods com- 
bined with several small likelihoods may give the same Sn (and An) as all medium likelihoods. There is per- 
haps no reason to assume that the former case should be assessed differently than the latter, but this is 
possible, and in general will sometimes occur. 

3.2    ASSESSING CORRELATIONS 

In the single distance case, a nonparametric approach was used to estimate the likelihood functions. 
No a priori functional forms were used or even hypothesized. Taking this approach further, n can be fixed, 
and then the statistic S„ is analyzed in the same way the individual distance statistics were analyzed. 

A large number of Sn samples must be obtained to represent the two hypotheses. To do this, the same 
intradatabase distances are used as discussed earlier in estimating the single-distance likelihoods. However, 
they are now taken in groups of n, so that multiple Sn estimates are obtained. For example, if a certain vector 
has 12 distances in the database for n = 5, then the first 5 are used to make one S5 sample, the second 5 to 
make another, and the last two are discarded. 

11 



This procedure is used for the distances representing both H0 and Hu whereupon the PDFs are esti- 
mated using histograms, and then a likelihood ratio A„ is formed just as before. While previously rather ugly, 
spiky, nonlinear PDFs resulted, these Sn histograms are much smoother, as would be expected. 

One key point about this procedure is that the data set is reused for all values of n. For example, taking 
the example 12 distances, if n were 6 rather than 5, the first 6 distances would be taken to form one value 
of S6 and the last 6 to form another. These estimates are obviously highly correlated due to this high data 
overlap, which would ordinarily not be good. However, the hope is to find an analytic expression that use- 
fully approximates these likelihood functions, so how they vary with n is important. Correlated errors may 
actually make it easier to see this variation, although the absolute errors may be greater. 

Figure 4 shows some likelihood functions ^„estimated using UHF (430 MHz) narrowband signature 
distances from a particular class of satellite. For various logarithmically spaced values of n, estimated values 
of An are shown. These curves appear to be nearly linear for positive Sn, with varying slopes. The slopes 
themselves decrease with n, suggesting an intrinsic data dimensionality such that larger numbers of distanc- 
es are more highly correlated. The curves go reasonably close to the origin; it seems logical that summing 
inconclusive evidence should produce inconclusive results. 
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Figure 4. Estimated Sn likelihood ratios. 

It is not easy to see major correlated fluctuations in these particular curves, but this effect has been 
observed in other cases. It is clear that the curves seem to maintain quite uniform spacing, which is likely 
the result of correlated estimation errors. The large Sn region is not estimated very accurately, since there is 
a shortage of H0 data here. Similarly, the negative Sn region has few Hl samples, and the curves are not very 
accurate. 

12 



A system has been defined that can be used to determine the overall likelihood of the hypotheses given 
n distances, if n is one of the values of the curves. If not, in principle, curves for all n could be calculated, 
but this would take quite a bit of time and storage. Interpolation between the curves was done successfully 
in one system, but that approach has certain problems. Interpolation defines a function of two variables, 
F(S„,n), but this will contain certain small fluctuations, in which, for example, increasing Sn might result in 
decreasing or constant A„.The curve in Figure 4 for n = 13 shows this type of effect. 

A potentially more serious problem can occur if a system is fielded using this type of statistical model, 
necessarily containing some maximum n based on the available database at the time of statistical modeling. 
Even at that time, some vectors being classified will possess more than n associated distances, but not 
enough for estimating Sn. This problem is exacerbated by a gradually increasing database for systems that 
automatically do database updates. In this case, extrapolating between the last available cases (160 and 260 
in Figure 4) could be very inaccurate, possibly even producing a negative slope. In this case, a very large Sn 

could generate a negative A„\ 

A much better approach would be to use an analytic model that: 

1. Never has decreasing An with increasing Sn for any n 

2. Provides a smooth analytic function without fluctuations 

3. Reasonably fits the existing curves for specified values of n 

4. Has few enough parameters to be easily computable and possibly amenable to optimiza- 
tion techniques. 

The development of such a model is the subject of Section 3.3. 

3.3 ANALYTIC MODEL DEVELOPMENT 

It seems reasonable that the curves of Figure 4 might possess a constant slope for fixed n, indicating 
that S„ should be discounted by this fraction to obtain an overall likelihood An. In that spirit, Figure 5 shows 
several steps of heuristic analysis of the slopes of Figure 4. 
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Figure 5. Analysis ofanfor various n. 
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In the left graph, the slopes an AJSn are estimated by simply using the ratio of the largest y and x from 
Figure 4 for each curve. The graph is on a linear scale; the annotation follows the specific values of n rather 
than being uniform. The center graph plots the log (base e) of the slopes in the first graph, and a logarithmic 
scale is used for the n axis. A nearly linear variation in slope with n can clearly be seen. (There is perhaps 

a slightly steeper slope for large n.) 

In the right graph that slope is divided by logn. All the slopes appear within a narrow range of about 
-0.30 to -0.35, and there is a gradual decrease, on the average. The approximately linear variation of the 
center graph would produce a one-parameter model, which is certainly convenient. Instead, a line is fit to 
the right plot, ending up with a two-parameter model, still quite convenient and fitting the data even more 

accurately. 

Mathematically, an analytic expression Kn is sought, which approximates the available an, can be 
computed for any n, and can be inserted into Equation (1) to compute the total likelihood An. Kn is consid- 
ered a factor less than unity, which compensates for correlation. Fitting a line to the points of the right graph 

of Figure 5 gives the expression: 

loga„ 
-r^-2 = mlogn + b     , (2) 
log« 

from which it immediately follows that 

A    = e[{m\ogn + b)\o%n\s (3) 

In the example of Figure 5, m = -0.009 and b = -0.297. 

Figure 6 shows the resulting analytic curves for the narrowband radar signature example. These 
curves can of course be plotted for any value of (n,S„), but shown are approximately the same values as in 
the estimated curves of Figure 4. Comparing this plot with the estimated plot, the curve spacing is slightly 
different, the curves pass through the origin, and the results are much smoother. The essential behavior does 

seem to be captured, however. 

The merit of the system is not reflected in how well these two sets of curves match, anyway. The orig- 
inal estimated curves are not beyond reproach, as they are estimated using limited, correlated data. The real 
test is how well a real system based on this model performs; there may also be an opportunity to optimize 
the parameters m and b to improve system performance. These issues are discussed in Section 4. 
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Figure 6. Analytic Sn curves. 
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4.   SYSTEM PERFORMANCE ASSESSMENT AND OPTIMIZATION 

4.1    SYSTEM OVERVIEW 

It is helpful at this point to recapitulate the steps used in an actual system, as opposed to the steps 
needed to build the statistical models that go into it. The system itself is rather simpler in operation than in 
design and can be diagrammed as shown in Figure 7. 
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TEST 
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DISTS 
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CALCULATE 
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SINGLE-DIST 
LIKELIHOOD 
FUNCTION 
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Figure 7. System overview. 

The first processing step is to compare a vector under test with appropriate vectors in the database— 
a major effort and the data-specific part of the algorithm. It is up to the designer to produce an appropriate 
means of comparing two vectors of this data type, as was done in the narrowband radar signature example. 
The output of the first box is one or more distances, quantifying similarity between the vector under test and 
each comparable database vector. The next step is to refer to the single-distance likelihood function, con- 
verting each distance into a likelihood. This is generally a simple table lookup, possibly including interpo- 

lation. 

The final step is to sum the individual likelihoods to form the quantity Sn and then to correct its value 
using Equation (3) and the provided values of m and b. If the resulting log likelihood An is, say 3, the odds 
of hypothesis H{ are eh 1 or 20:1, and the reported confidence in this hypothesis is 20/(20 + 1) or about 95%. 
The supporting evidence consists of the individual distances, which can be sorted by maximum likelihood 
and then displayed along with the vectors themselves. 

4.2    PERFORMANCE CHARACTERIZATION 

The best way to characterize the performance of this type of system is to conduct an experiment, clas- 
sifying a number of good as well as "bad" vectors. The resulting confidences give a good idea of how much 
information is being extracted from the data. They do not reveal how much information is contained in the 
data, but they can be useful for optimization and to inform users of the expected performance prior to ob- 

taining experience with the system. 

17 



The good vectors may be obtained easily using the "leave one out" method of classifying each one 
against the rest of the database. The effect of a single vector on the statistical model that is being used is 
negligible, so the results are not very biased. As always, the bad vectors are a more difficult proposition. In 
the narrowband radar signature example, simulated unstable vectors that involve elevation differences 
and/or look angle shifts could be used in an attempt to simulate performance against a satellite that is un- 
stable and slowly tumbling. Instead, signatures will be used of satellites of other classes as the bad case, 
representing the case in which a satellite is misidentified or a new launch is of an unexpected type. As long 
as the other classes selected are not extremely similar to the class being monitored, they would be expected 
to fail the test for hypothesis Hh stable satellite of the other class. 

As an example, 2101 good vectors and 979 bad vectors were classified, which were really from four 
objects, one each from four other satellite classes. Computing the confidences produced the distribution 
shown at left in Figure 8. The confidences were divided into the 6 bins shown, each representing the fraction 
of the total confidences that fell into some confidence range. For example, confidences of 90% to 99% were 
reported for over 14% of the good signatures but less than 3% of the bad. To the right of Figure 8 is a graph- 
ical depiction of the constant K„, which is used to correct Sn in the confidence-generation code. The values 
of m and b are those previously obtained by fitting to the curves of Figure 5, m = -0.009 and b = -0.297. 
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Figure 8. System performance before optimization. 
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This confidence bar chart may be immediately used to assess whether system performance is adequate 
to be operationally useful to someone tasked with the job of satellite monitoring. It seems that in over 50% 
of the cases, a good signature results in a confidence report of greater than 90%, while less than 3% of the 
bad cases generate such a report. These percentages appear useful, if not much information can be extracted 

from the signature by other means. 

It is very difficult to say whether a report of > 99% confidence should occur 20%, 40%, or 60% of the 
time, given a good vector. On the other hand, false alarm requirements are known. For example, a very low 
confidence of less than 1 % seems to occur with good data over 4% of the time. This rate is clearly a problem; 
one would like to calibrate the system so that this occurs 1% of the time or less. Similarly, the fraction of 
the good confidences located in the 1% to 10% range should be 9% or less. The same thing is true on the 
other side of the graph. The fraction of the bad confidences indicating > 99% good confidence should be 
less than 1%, which it is, and the 90% to 99% case should be less than 9%, which it is. 

A figure of merit can be formulated, describing the quality of the system using the given statistics and 
data. Consider the good half of the graph first. The idea is that for log likelihoods small in absolute value, 
this measure is proportional to the log likelihood. A positive log likelihood boosts the merit, and a negative 
one diminishes it. However, for very large absolute likelihoods, a law of diminishing returns sets in; the sys- 
tem is not considered much better if it reports a confidence in Hx for a good signature of 0.99999 than if it 
reports 0.999. Hence it is desirable to flatten out the incremental merit for very large likelihoods. In the small 
likelihood region at the bottom of the chart, negative likelihoods are already being added, which is the prop- 
er thing to do, but false alarms may be further reduced by providing a larger scaling factor for those negative 

likelihoods producing very low confidences. 

The bad half of the chart can be handled by similar means, but it has been found useful to further cor- 
rect for false alarms in the high-confidence region, essentially waiting until all vectors have contributed their 
share to the merit, and then subtracting an additional penalty based on false alarm considerations. 

Let \ represent the system-calculated log likelihood that the ith vector satisfies Hu based on some 
number n{ of distances, not shown notationally. Let mp?> (mW) represent the individual merits of the as- 
sessments for the good (bad) vectors, numbering Ng (Nb). Let P represent a penalty for exceeding false 
alarm limits for the bad vectors. Define an overall system merit: 

M=W   X"*W + F   I>P)^->-p    • (4) 
g   good b   bad 

Dividing the X,- into intervals corresponding to Figure 8, and noting that the confidence corresponding to a 
given log likelihood is Ci = *V(1 + eX') the confidences (0.01, 0.10, 0.50, 0.90, 0.99) correspond to log 
likelihoods (-4.6, -2.2,0,2.2,4.6). With this in mind, define 
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m\s) (^.) = 4.6 + 0.05(A,- - 4.6) 0.99 < q 

= Xi 0.90 < q < 0.99 

= 0.7A,- 0.50 < q < 0.90 

= Aj 0.10<C,<0.50 

= 3.0A,- 0.01 <C,< 0.10 

= 5M,- 0.00 <Q< 0.01 
(5) 

Similarly, 

mjb\Xi) = -5Mi 0.99 < C,- 

= -3.0A,- 0.90 <q< 0.99 

= -A,- 0.50 <C,< 0.90 

= -Xt 0.10<Q<0.50 

= -Xi 0.01 <C,< 0.10 

= 4.6-0.1(2.+4.6)    0.00 < Q < 0.01 
(6) 

Denote the lower and upper limits of the kth confidence interval by lk and uk, respectively. Let the 
fraction of the total A,,- falling in the fcth interval be fk. A false alarm penalty pk is invoked whenever a bad 
vector has^. larger than expected in the high confidence intervals [0.90, 0.99), [0.99,1.00]: 

P=   5>*     . (7) 
pk>0 

where 

*k-lk 
Pk = -^--l     . (8) 

The result of this calculation is a numeric characterization of the merit of the system, which can be used to 
improve performance by optimizing system parameters. 
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4.3    SYSTEM OPTIMIZATION 

4.3.1    Example 

In Figure 8 the merit calculated using such a method is reported as 0.93. The values of m and b can 
be optimized by changing them and then recomputing all the confidences to obtain a new merit value. There 
are many optimization techniques suitable for maximizing this merit. In this situation, each function calcu- 
lation is very expensive and may take minutes or even hours for very large databases. A simple scheme was 
used that takes linear steps tailored to the problem to find a local maximum, followed by binary search to 
refine the value. This method was applied to the two parameters alternately. 

The optimization proceeded as shown in Figure 9. After a brief excursion into disaster, the search rap- 
idly identified a local maximum with about twice the initial merit. It took 24 iterations to verify the maxi- 
mum of 1.91 within the limits of search termination, but after 7 iterations a value of 1.89 was attained. The 
computation time on an HP-735 workstation was 97 min, or about 4 min per iteration. 

10 15 

ITERATION 

20 

Figure 9. System optimization. 

The resulting confidence histogram is shown in Figure 10. Note that the false alarm problem is now 
corrected. The chance of obtaining a confidence over 90% in the good case has dropped from 55% to 44%, 
but the false alarm rate in this region for the bad case has dropped from 3.5% to 1%. Similarly, the chance 
of obtaining a confidence below 10% in the bad case has dropped from 18% to 7.7%, but the "miss rate" for 
the good case has dropped from 10% to 4.2%, which is more significant. In general, system errors (in which 
a bad vector is identified as good with high confidence and vice versa) are a much bigger problem than cor- 
rect assessments that are less conclusive. In the latter case, the user just waits for more data, while in the 

former the user may be confused. 
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CONFIDENCE DISTRIBUTION (Merit = 1.91) 

BAD GOOD 

0.634 

>0.99 

0.0102 

0.262 

0.90 TO 0.99 0.178 

0.50 TO 0.90 0.278 0.298 

0.10 TO 0.50 ; 0.218 

0.01 TO 0.10 

<0.01 

0.0746 

0.0020 

1 0-0400 

0.0023 

1.0 1 1 I L 

0.8 
K„ 

- 

0.6 - 

0.4 - - 

0.2 - - 

0.0 1 1 1 I r 
0 50 100 

n 
150 200 

Figure 10. System performance after optimization. 

It is clear that the Kn curve drops off more rapidly in the optimized case. The parameters found by 
optimization were m = -0.0302 and b = -0.2944. Large likelihoods are being discounted more, so in general 
the very high and low confidences decrease and the middle confidences increase. Note that the fraction of 
each case above and below 50% does not change; the correction functions pass through the origin, so the 
sign of the log likelihoods is preserved. 

4.3.2 Parameter Limits 

Parameters m and b must have their values constrained to ensure that the exponential of Equation (3) 
remains between one and zero. It is easy to see that m must be negative in order for this to be true for large 
n. Given a negative m, b can be slightly positive, up to m log2. These limits should rarely be challenged 
when fitting to experimental curves such as those of Figure 4. However, optimization, particularly when 
working with small amounts of data, may exceed these limits. 

It can be very expensive in both CPU time and memory to calculate Sn curves such as those shown in 
Figure 4. A viable alternative is to go directly to the optimization step, once the single-distance likelihood 
function has been calculated. If reasonable starting values are used, this alternative has proven effective. 

4.3.3 Optimizing Other Parameters 

A method was shown of optimizing the very important parameters m and bright are at the heart of the 
method for combining correlated evidence. At the end of this process the optimized merit can be viewed as 
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a numeric representation of the amount of information the system is extracting from the data. This merit can 
be used to assess or optimize any other parameter in the algorithm in the same way. 

For example, certain decisions are made in the estimation of the single-distance likelihood function 
with regard to smoothing, etc. These decisions can be assessed by simply trying several different values, and 
comparing the merits found after optimizing m and b in each case. The m and b values may be different if 
the likelihood estimation changes, but that is not important. The important thing is whether the final opti- 
mized merit is significantly different. The same method is applicable to the definition of the actual distance 
measure itself; the effect of varying distance measure parameters can be easily assessed. 

Substantial computation may be associated with these optimization techniques, particularly if a full- 
fledged optimization loop is used to vary a front-end parameter such as used in the distance measure. Cal- 
culations may be performed for all the good distances, simulated bad distances, likelihood functions, and 
optimized m and b parameters for each iteration. This process can easily take many hours per iteration. On 
the plus side, however, it is a fully defined algorithm that requires no human intervention. In some cases, 
such optimizations have run for days or weeks, when the CPU time was available. 
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5.  MULTIPLE STATISTICAL MODELS 

5.1    POSSIBLE STATISTICAL GROUPS 

To this point, the situation looks rather homogeneous; a large group of vectors is compared one-by- 
one with appropriate database subsets. All that is known about each vector is that it is from a particular sat- 
ellite type, so all the vectors are thrown into one statistical class, yielding a single likelihood function, and 
single subsequent parametric method of evidence combination. In practice, things are often not this uni- 
form, so multiple statistical classes may be required. Since the division into statistical classes is obviously 
very application-dependent, the signature monitoring example will be revisited. 

Figure 11 shows the common look angle extent of the 2101 UHF narrowband radar signatures clas- 
sified in the optimization experiment of Section 4. A minimum of 30° of look angle is required for process- 
ing; those vectors with less are rejected. At the low end, a single distance is computed between each 
signature and its potential matching signatures from the database. At the high end, several overlapping par- 
tial distances are often produced. It is possible that dividing the signatures into multiple categories based on 
look angle extent could improve performance. The likelihood function and (m,b) pair used for each group 
might be designed to better compensate for a possibly slightly higher distance correlation due to the in- 

creased overlap with increased available look angle. 

30° 60° 90° 120° 
LOOK ANGLE EXTENT 

150° 

Figure 11. Look angle histogram. 

Or consider Figure 12, which shows the maximum elevation at crossover for the example 2101 sig- 
natures. This view of the database is even more interesting, since two signatures must have crossover ele- 
vations within 3° or so to be compared. The bars are 1° wide so that when a signature with crossover 
elevation of around 10° is compared with the database, it may find as many as 400 or 500 possible matching 
signatures. Clearly, the large n region of the classification system is being exercised. On the other hand, a 
signature over 50° or so in crossover is probably going to be compared with about 20 to 30 other signatures, 

a smaller value of n. 
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Figure 12. Crossover elevation histogram. 

There is reason to suspect that the statistics of the distances might depend on crossover elevation to 
some extent. For example, consider a satellite with a large, relatively flat surface that always nearly faces 
the earth. When viewed from a low elevation, this structure may be viewed edge-on, and it may have small 
RCS, so the signature may be dominated by other returns. At high elevation, that same structure is viewed 
broadside and may give large lobes that dominate the signature. Depending on the characteristics of this par- 
ticular structure relative to the rest of the satellite, dividing the signature distances into two groups based on 
crossover elevation might improve statistical modeling, and hence overall system performance. 

Other minor factors could be considered, such as which sensor produced a signature, or whether the 
crossover elevation difference is very small or nearer to the 3° limit. But the most important factor by far 
involves using a priori knowledge about the satellite configuration. If it is known that a satellite is in certain 
configurations at certain times, the distances can be divided into two categories, same configuration and dif- 
ferent configuration. 

For example, many sun-synchronous satellites, such as the French SPOT series or the Canadian 
RADARSAT, maintain their orbital plane at a relatively fixed orientation to the sun. They typically use a 
solar panel with a single degree of freedom, which rotates once during each orbit of about 100 min. It is 
easy to predict the position of such a panel and characterize the configuration of the satellite at a given time 
with one parameter, a solar panel angle. It is logical to expect that when the solar panel configurations are 
nearly the same, the signature similarities would be much greater, and different statistics would be 
appropriate. 

In summary, the larger the database, the more data subsets can be evaluated. If the database size is 
marginal, it is too hard to estimate the statistics of subsets, and it is best to just combine everything together. 
As more data becomes available, this decision can be reevaluated. 
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5.2    HANDLING MULTIPLE LIKELIHOOD FUNCTIONS 

Assume the ability to divide the distances computed between a vector under analysis and the database 
into more than one group. Clearly, the first step is to estimate single-distance PDFs and likelihood functions 
for each group. The question, then, is how to generalize the system depicted in Figure 7 to handle this model. 

This generalization has been done in two different ways, and in one case it was done both ways for 
the same data set. First, if there is a marginal amount of data, yet confidence is high that the data grouping 
is reasonable, the single-distance PDFs can be estimated and verified that they are distinct and reasonable. 
For example, the same-configuration case should have a larger number of small distances. The likelihood 

functions can then be computed. 

A small data set is insufficient to estimate separate values of m and b for the two cases. What can be 
done is to just form a single hybrid Sn by summing the likelihood for each distance by looking it up in the 
appropriate likelihood function. The value of n is then the sum of all the distances, and it is corrected by 
Equation (3) using a single (m,b) pair. The individual distances are assessed more accurately, but the cor- 
rection for correlation seems a little crude. We call this method early combination. 

With a somewhat larger database, separate (m,b) values can be calculated for each statistical group, 
say m, b, m' and b'. Distances are split into two groups, ending up with two log likelihoods, representing 
assessments of the unknown vector in terms of multiple disjoint sets of database vectors. The problem is 
how to combine these assessments; again, these are correlated, so simple addition of log likelihoods should 
overestimate the total likelihood. 

One possibility is to weight them in some fashion and then add. This weight might depend on the frac- 
tion of distances that went into each assessment, for example. Experimentally, the best technique is to si- 
multaneously optimize the four parameters m, b, iri and b\ where the overall confidence is obtained using 
simple addition of the separate log assessments. In this way the optimization process tries to adjust the 
weights to properly assess the vectors. It will simultaneously try to correct for the simple addition overesti- 
mate. We call this method late combination. 

For one class of satellites with a physical configuration that can be represented by a single angle, the 
distances were divided into "same" and "different" configuration groups, and both early and late combina- 
tions were tested. The numeric merit value indicated that the late combination system extracted significantly 
more information from the data. The early system was usable, but the late system was clearly better. 

In another case, an extremely large database was divided into 16 distance classes. This division was 
based on 4 independent tests: same/different object, close/far crossover elevation, same/different configura- 
tion, and short/long common look angle. This processing used 8 different likelihood functions to compute 
the Sn values, and then combined 2 such values with the aid say m, b, rri and V values. 

Multiple hypotheses about the input vector can be tested when multiple statistical classes are identi- 
fied. For example, in the previous large-database situation in which 16 classes were identified, the object, 
elevations, and look angle situations are known, but the physical configuration of the unknown satellite is 
in general not known. This sounds like a problem: which PDFs should be invoked to properly obtain the 
individual distance likelihoods? 
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Actually, this is an opportunity to extract more information from the system than just whether the sat- 
ellite is stable and in some normal configuration. Several hypotheses were tested in which Hk represents the 
hypothesis that the satellite is stable and in configuration k. The hypothesis that generates the largest likeli- 
hood is accepted, if it exceeds some absolute threshold (indicating good confidence stable) as well as some 
threshold relative to the next-largest likelihood (indicating an unambiguous configuration determination). 
Whenever the database signatures' configuration can be validated (by requiring internal consistency, for ex- 
ample), this type of a system can be constructed. 
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6.   GENERAL APPLICABILITY OF METHOD 

6.1    C-BAND NARROWBAND RADAR EXAMPLE 

Thus far, the method of evidence combination presented has been based on a single data set, that de- 
picted in Figure 5. In fact, this method has been used on a wide variety of data, some of which is presented 
in this section. Both the sensor and the satellite class is varied, illustrating the range of problems to which 

this method has been applied. 

The first example considers another narrowband radar data set, but this time the radar frequency is C- 
band (5.6 GHz) rather than UHF. The character of the data shown in Figure 13 is significantly different from 
the UHF datapreviously considered (Figure 2). In addition, a satellite class with much greater radar signa- 
ture repeatability is considered. The similarities between the two signatures of Figure 13 are great; they were 

taken on the same object three days apart. 

40' 100° 
LOOK ANGLE 

Figure 13. C-band signatures. 

It seems that algorithms for automatic signature comparison that are designed and tuned for UHF data 
would need substantial revision to deal with the rapid variation of the C-band data, but such is not the case. 
The same signature comparison code performs usefully, outputting partial distances characterizing local 
signature similarity. Slightly different parameters are ordinarily used, but even the same parameters give 

reasonable performance. 

When the single-distance PDFs (not shown) for this class of object are estimated, they show much 
greater difference between the HQ and the Hx cases than the previous example. This is because the satellite 
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has fewer configurations and affects UHF data from this satellite class as well as C-band. As a result, the 
single-distance likelihood functions show greater absolute values of log likelihood for a given distance. In 
this particular case, several statistical groupings are used, employing the early combination method of look- 
ing up each distance in an appropriate likelihood function, summing the total likelihoods, and then correct- 
ing with the analytic model. 

Proceeding in the usual way, Figure 14 shows the estimated values of An for this C-band case and may 
be compared with Figure 4. There are some similarities and some differences. The summed likelihood ab- 
scissa includes likelihoods of over twice the previous case, which is directly attributable to the greater like- 
lihoods found in the single-distance density (not shown). 
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Figure 14. C-band estimated Sn likelihood ratios. 

The linear region extends into the small negative likelihood region more so than in the previous case, 
lending greater support to the idea of using a single correction factor for all likelihood sums. There are ob- 
vious correlations in the curve fluctuations, especially for values of 35, 58, and 96, which are caused by the 
correlations discussed previously. 

The big question, however, is how well the analytic model will fit this different data set. Figure 15 
shows this analysis and can be directly compared with Figure 5. The overall trends are again similar. While 
the center plot of Figure 5 is almost linear, suggesting that a constant slope might be a useful model, Figure 
15 shows more variation. The right plot of Figure 15 shows a reasonable fit to a straight line, and indeed a 
system constructed using these statistics shows good performance. 
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Figure 15. C-band anfor various n. 

Figure 16 shows the performance of this system after parameter optimization in the same format as 
Figure 10. Note that the system error rate is low, and a high percentage of good signatures generate a high 
confidence. The system merit is more than twice that of the example of Figure 10. The K„ curve shows that 
generally smaller corrections are being applied to Sn than previously. 
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Figure 16. C-band system performance after optimization. 
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6.2    WIDEBAND RADAR EXAMPLE 

The final example is significantly different, involving a wideband radar that can measure high-reso- 
lution range profiles (RPs). Techniques for aircraft classification using radar RPs have been described 
[21,14] recently, containing numerous RP plots. RPs are one-dimensional functions that sometimes look 
vaguely like signatures, but represent instantaneous RCS as a function of range rather than total cross sec- 
tion as a function of time. The range is swept out by each radar pulse in nanoseconds, while the signatures 
represent several minutes of data as an LEO satellite passes the sensor. 

In addition, the targets are again changing. Rather than LEO satellites, geostationary-earth-orbit 
(GEO) satellites (in orbital planes nominally passing through the equator) are used. Since these do not move 
with respect to the radar, range profiles can be collected to help identify and monitor them. 

While LEO satellites may have complicated motions of instruments and solar panels, not to mention 
the motion of the entire satellite relative to the radar, GEO satellites usually have minimal motion of instru- 
ments with essentially no motion of the satellite relative to the radar. 

Most GEO satellites can be classified into two groups. One group has one or two solar panels pointing 
north/south and nominally rotating once per day, to follow the sun. There will normally be some daily vari- 
ation in the RPs due to solar panel motion. Figure 17 shows an example RP from a typical satellite of this 
class. The initial peaks usually represent returns from earth-pointed instruments such as antennas. The large 
peak usually represents a return from the satellite main body. The solar panels usually affect the RP just 
beyond the large peak. In fact, if they face the radar, they can sometimes produce a very large specular peak, 
larger even than that of the main body. 

RELATIVE RANGE (m) 

Figure 17. Orion 1 range profile (3-axis stable). 

The other group of geosynchronous satellites spin, collecting solar energy with cells arranged on the 
outside of the drum. Figure 18 is an example of this class. In general, there should be much less variation 
from RP to RP in this class; any variation may be attributed to station-keeping differences and instrument 
pointing changes. 
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RELATIVE RANGE (m) 

Figure 18. Galaxy 6 range profile (spinner). 

The algorithms used to compare two RPs are not discussed here, but the comparison is much simpler 
than that of the narrowband radar case and is based on cross-correlation of entire RPs after preprocessing. 
The result is a single distance, describing the similarity between two RPs. Once distances are computed, the 
statistical algorithms described previously can be applied to assess the data. This example will be used to 
demonstrate the generality of the method. 

In the previous narrowband radar examples, about 2500 signatures from the database were used. In 
this wideband case, only 338 total RPs are available to work with, which gives a total of 56953 distances of 
all kinds. Again, the interest is in monitoring the stability of a satellite and identifying it if necessary. If an 
RP can be formed, the satellite is relatively stable, but there is uncertainty whether it might be slowly tum- 
bling, or if it is the wrong object. The following approach is adopted: 

1. For H0, use a*l distances between satellites of different classes. This simulates the case 
where RPs do not match due to bad identification (ID), Based on previous experiments, 
this level of mismatch may also be useful in case the correct satellite is in an unexpected 
orientation. 

2. For Hh use all distances between similar satellites with very similar configurations, i.e., 
spinners to spinners or 3-axis stable to 3-axis stable in which the Greenwich Mean Time 
(GMT) is within 1 hour, and hence the solar panel angle is expected to be within roughly 

15°. 

3. For H2, use the remaining distances (3-axis stable to 3-axis stable) but with GMT differ- 
ence greater than 1 hour. These should show similarity, but not as great as those in Hx. 

The top graph of Figure 19 shows the PDF estimates obtained by dividing the distances into these 
three groups. The estimates indeed show that Hx has the smallest associated distances, followed by H2, and 
then H0. The differences of these log curves give the log-likelihood curves shown in the bottom graph. To 
interpret a single distance in this system, simply determine whether the two RPs involved are comparable 
spinners,  or 3-axis  stable  satellites with GMT within   1   hour (and comparable position in the 
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geosynchronous belt). If so, use the solid curve, allowing the possibility of obtaining fairly large confidences 
from a single comparison. If not, the dotted curve must be used, and less information is obtained. The reason 
to bother with the dotted curve is that many more distances become available, and their combined likelihood 
may give a good assessment of the RP. 
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Figure 19. Single-distance statistics. 

Figure 19 may be compared directly with Figure 3. Note that the forms of the PDFs are completely 
different, as are the likelihood functions. In particular, much larger negative likelihoods are obtainable in 
this example than in the narrowband radar examples. The question here is whether this method of combining 
likelihoods and correcting for correlations will be applicable. 

There is not enough data supporting the analysis H, to do late combination in which the corrected, 
summed likelihoods are combined to form the overall likelihood. Instead, the early method is used in which 
the individual likelihoods are obtained from the appropriate curve, and then the heterogeneous likelihood 
sum is corrected using a single correction factor. Computing the experimental sums Sn as before gives the 
curves of Figure 20. These look qualitatively similar to the previous example shown in Figure 4. They are 
more symmetrical in the negative likelihood region, which would be expected since the single-distance 
PDFs are also more symmetrical. The values of n are less, reflecting the much smaller database. 

Next these slopes were analyzed, producing Figure 21, in the same format as Figure 5. This figure 
certainly looks familiar; although the parameters are somewhat different, it shows similar behavior of the 
slopes of the Sn curves. Hence, even though the physics, targets, and single-distance statistics are completely 
different, the statistical model appears to detect the underlying dimensionality of the data and provides a 
useful fusion algorithm. 
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J=   0   — 

-10 

Figure 20. Estimated RP Sn likelihood ratios. 

The final test of this analysis is, of course, to perform an experiment and assess the information ob- 
tained. For this case, an ID problem was again chosen for the performance characterization. Examining the 
database of 338 RPs, 136 different objects are contained in it. However, four satellite classes have a total of 
144 RPs. For the "good" assessments, the likelihood that each of these 144 RPs is a stable satellite of the 
correct type was assessed. For the "bad" assessments, the likelihood that each of these 144 is a stable satel- 
lite of one of the other three types was assessed. This experiment gives 144 good assessments and 432 bad 

assessments. 
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Figure 22 shows the performance of the system on this experiment, using the model represented by 
the dashed line at right in Figure 21. The merit is 3.63, which compares favorably with the narrowband radar 
examples. False alarms are very low, and the confidences tend to be bunched towards the middle. Recall that 
the two-parameter (m,b) optimization process merely scales the log likelihoods, so the fraction of the con- 
fidences above or below 50% does not change. Since less than 3% of the bad cases are above 50%, and less 
than 12% of the good cases are below 12%, there is a lot of room for optimization by shifting the Kn curve 
up. The results of that optimization are not shown here. It is already clear that these methods appear appli- 
cable to this class of data and that the overall system can produce useful information. 
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Figure 22. RP system performance before optimization. 
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7.   SUMMARY AND FUTURE WORK 

A new technique has been described for fusing correlated data. This technique has several advantages 
over competing methods such as neural networks or fc-nearest-neighbor classifiers, including using data of 
varying dimension and databases of varying size without discarding any relevant information. 

Once a data-specific method of vector comparison has been produced, this machinery can be applied 
in largely automatic fashion, producing an algorithm for assessing the confidence that a vector under test is 
"normal" as defined by the database. If the database can be divided into subsets representing multiple con- 
ditions, multiple hypothesis tests enable testing for the presence or absence of those conditions. System op- 
timization is easily performed to adjust false alarm rates. 

Experiments on several data types have demonstrated the wide applicability and robustness of the 
method. The investigation continues regarding the application of the method to new scenarios and data 
types. To date, this research has been data- and experiment-driven. It may be useful to invest more effort 
into analytic analysis of this model to determine the classes of input data for which it is best suited and to 

refine the algorithms. 

It may become necessary to pursue data fusion beyond the vector comparisons described in this re- 
port. For example, in a satellite monitoring application, a priori knowledge or additional sources of infor- 
mation about satellite status might be available. Other pieces of information, such as specular locations 
extracted from the signatures themselves, might also represent useful evidence. 

There is no immediate requirement for such a system, but the Bayesian belief network [22] formalism 
appears quite attractive. It seems that the "confidences" might fairly easily be interpreted as probabilities, 
providing good compatibility with the Bayesian formalism. Preliminary design sketches of such systems 
have been made, but no experiments have been done to date. 
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